COS 423

Problem Set 5

Due: Tuesday, May 11
Spring 2004

(Collaboration Allowed)

(5 points)
1(a) A prioritized queue (as opposed to a priority queue) is a data structure consisting of a list of items, each with a real-valued key, on which the following operations are possible.

make-queue: return a new, empty list.

inject
[image: image1.wmf](,,)

xkL

: add item x with key k to the back of list L.

pop(L): remove the front item on list q and return it, along with its associated key.

max (L): return an item on list L of maximum key (this operation does not change the list)

Give an implementation of prioritized queues with an amortized running time of
[image: image2.wmf]O(1)

per operation, starting with no queues.

(5 points)
(b) A prioritized stack is like a prioritized queue except that the inject operation is replaced by

push
[image: image3.wmf](,,)

xkL

: add item x with key k to the front of L.

Give an implementation of prioritized stacks with an
[image: image4.wmf]O(1)

 amortized running time per operation, starting with no stacks.

(10 points)
(c) A prioritized deque supports all the prioritized queue and prioritized stack operations, as well as the following one:

eject (L): remove the back item from list L and return it, along with its associated key.
Give an implementation of prioritized deques with an
[image: image5.wmf]O(1)

 amortized running time per operation, starting with no deques.
For each of
[image: image6.wmf](),(),and(),

abc

prove the correctness of your implementation and of your time bound. Note that a solution to (c) solves (a) and (b) also, but you may find it helpful to solve (a) and (b) (or maybe (b) then (a)) before doing (c).
(4 points)
2(a) (Negative cycle detection by contraction) Let G be a directed graph with a real valued weight
[image: image7.wmf](,)

cvw

 on each edge
[image: image8.wmf](,)

vw

. The goal is to discover whether G contains a cycle of negative total weight. Consider the following method. A contraction of vertex v consists of adding an edge
[image: image9.wmf](,)

uw

of weight
[image: image10.wmf](,)(,)

cuvcvw

+

for each pair of edges
[image: image11.wmf](,)

uv

and
[image: image12.wmf](,)

vw

with
[image: image13.wmf]uv

¹

and
[image: image14.wmf],

wv

¹

and then deleting v and all its incident edges. Observe that a contraction can create multiple edges as well as loops (edges of the form (v,v)) and that a contraction can be applied to a graph containing loops and multiple edges. The negative cycle detection algorithm is as follows: perform contractions until either all vertices are eliminated (there is no negative cycle) or a loop of negative weight is created (there is a negative cycle). Prove the correctness of this algorithm.
(4 points)
(b) Give an exact bound on the worst-case number of edges this algorithm can create (including the original edges) as a function of the original number of vertices n. Conclude that this algorithm is not efficient.

(4 points)
(c) Consider the modified algorithm that, during each contraction, eliminates multiple edges by discarding all but the one with minimum weight among each set of multiple edges. Prove the correctness of the modified algorithm.

(4 points)
(d) Describe how to implement the modified algorithm so that it runs in
[image: image15.wmf]3

O()time.

n

(4 points)
(e) Describe how to extend the modified algorithm so that it still runs in
[image: image16.wmf]3

O()

n

time but, upon detection of a negative cycle, it returns such a cycle (rather then merely indicating that there is one).
3. (multitier server optimization) Consider a web-based business that has a three-tier computer system, consisting of a set of web servers, a set of application servers, and a set of database servers. A request is routed to some web server and processed, then routed to an application server and processed, and finally to a database server and processed. The goal is to buy enough of each kind of server so as to keep the delay in processing a request under some threshold, while spending as little as possible. We abstract this problem, and extend it to an arbitrary number of tiers, as follows.

There are k types of computers. For type i,
[image: image17.wmf]1,

ik

££

the cost per unit is ti. If ni computers of type i are purchased, the processing delay in tier i is
[image: image18.wmf]/()

iiii

danb

=-

if
[image: image19.wmf]ii

nb

>

 and ∞ if
[image: image20.wmf].

ii

nb

£

 Our goal is to find
[image: image21.wmf]12

,...,

k

nnn

such that the total cost of machines
[image: image22.wmf]1

k

ii

i

tn

=

å

is minimum, subject to
[image: image23.wmf]1

D.

k

i

i

d

=

£

å

 As a measure of the instance size, we use the total number of bits needed to express
[image: image24.wmf],,,

iii

tab

and D. We assume all the inputs are positive integers, except that some or all of the bi can be zero.
(10 points)
(a) Reformulate this problem as a yes-no problem and prove that it is NP-complete.
(10 points)
(b) Develop a polynominal-time algorithm that will come within a factor of two of minimizing the total cost while satisfying the total delay. Hint: Try discretizing the problem and solving it as a knapsack problem. Use a greedy algorithm.
(up to 20 points)
(a) (Extra credit) For one tier (k=1), there is a closed-form solution for n1 as a function of a1, b1, and D; namely,
[image: image25.wmf]111

/.

nbaD

=+

éù

êú

 Can you give an algorithm for two tiers that is polynominal-time in the number of bits needed to represent the inputs and the outputs (n1 and n2)? How about for three tiers?
_1144478828.unknown

_1144649175.unknown

_1144649406.unknown

_1144649851.unknown

_1144651878.unknown

_1144652113.unknown

_1144649964.unknown

_1144649773.unknown

_1144649243.unknown

_1144479589.unknown

_1144497106.unknown

_1144497261.unknown

_1144497324.unknown

_1144497224.unknown

_1144497027.unknown

_1144478849.unknown

_1144478769.unknown

_1144478789.unknown

_1144478811.unknown

_1144478770.unknown

_1144478607.unknown

_1144478720.unknown

_1144477613.unknown

